首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128419篇
  免费   8544篇
  国内免费   14507篇
化学   93280篇
晶体学   1414篇
力学   6465篇
综合类   1396篇
数学   20861篇
物理学   28054篇
  2024年   74篇
  2023年   1073篇
  2022年   1872篇
  2021年   2921篇
  2020年   3528篇
  2019年   3341篇
  2018年   2948篇
  2017年   4002篇
  2016年   4621篇
  2015年   3792篇
  2014年   5222篇
  2013年   9988篇
  2012年   8771篇
  2011年   7311篇
  2010年   6183篇
  2009年   8340篇
  2008年   8494篇
  2007年   8918篇
  2006年   7951篇
  2005年   6884篇
  2004年   6496篇
  2003年   5259篇
  2002年   4300篇
  2001年   3506篇
  2000年   3113篇
  1999年   2885篇
  1998年   2539篇
  1997年   2146篇
  1996年   1837篇
  1995年   1990篇
  1994年   1786篇
  1993年   1462篇
  1992年   1371篇
  1991年   1015篇
  1990年   869篇
  1989年   718篇
  1988年   594篇
  1987年   439篇
  1986年   400篇
  1985年   368篇
  1984年   342篇
  1983年   184篇
  1982年   301篇
  1981年   217篇
  1980年   235篇
  1979年   248篇
  1978年   178篇
  1977年   110篇
  1976年   97篇
  1973年   54篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
This paper presents a new sensitivity analysis method for coupled acoustic–structural systems subjected to non-stationary random excitations. The integral of the response power spectrum density (PSD) of the coupled system is taken as the objective function. The thickness of each structural element is used as a design variable. A time-domain algorithm integrating the pseudo excitation method (PEM), direct differentiation method (DDM) and high precision direct (HPD) integration method is proposed for the sensitivity analysis of the objective function with respect to design variables. Firstly, the PEM is adopted to transform the sensitivity analysis under non-stationary random excitations into the sensitivity analysis under pseudo transient excitations. Then, the sensitivity analysis equation of the coupled system under pseudo transient excitations is derived based on the DDM. Moreover, the HPD integration method is used to efficiently solve the sensitivity analysis equation under pseudo transient excitations in a reduced-order modal space. Numerical examples are presented to demonstrate the validity of the proposed method.  相似文献   
72.
基于青海共和盆地-3705m地热田实测数据,结合流固耦合传热理论并运用Comsol软件,建立了离散型裂隙岩体流体传热模型。考虑水流损失和热补偿共同作用,模拟得到了开采过程中上、下岩层(盖层和垫层)为绝热不渗透、传热不渗透、渗透传热时,储层(上、下岩层和压裂层)温度场的变化特征,分析了产出流量、水流损失、产出温度、产热速率的变化规律。研究结果表明:采热过程中产出流量始终小于注入流量;产出流量增幅速率先增大后减小,最后趋于稳定,前3a产出流量增幅超过总增幅量的3/4;忽略水流损失,将高估产热速率,采热初期甚至达到考虑水流损失时产热速率的3倍以上;考虑水流损失,产热速率呈先快速上升再趋于稳定后逐渐下降的趋势,最优开采时间为3a^11a;研究上、下岩层对产出温度的影响,仅考虑传热,采热寿命延长5.43%,同时考虑渗流传热时,采热寿命延长2.71%;采热前9a,水流损失占主导作用,即流入上、下岩层水流损失对产热速率的影响高于热补偿效应,开采10a后,热补偿效应占主导作用;同时考虑水流损失和热补偿效应得到的产热速率变化规律与实际工程更为符合,建议选择低渗透能力的上、下岩层延长增强型地热系统(EGS)运行时间。  相似文献   
73.
Two yellow bis-azo dyes containing anthracene and two azodiphenylether groups (BPA and BTA) were prepared, and an extensive investigation of their physical, thermal and biological properties was carried out. The chemical structure was confirmed by the FTIR spectra, while from the UV–Vis spectra, the quantum efficiency of the laser fluorescence at the 476.5 nm was determined to be 0.33 (BPA) and 0.50 (BTA). The possible transitions between the energy levels of the electrons of the chemical elements were established, identifying the energies and the electronic configurations of the levels of transition. Both crystals are anisotropic, the optical phenomenon of double refraction of polarized light (birefringence) taking place. Images of maximum illumination and extinction were recorded when the crystals of the bis-azo compounds rotated by 90° each, which confirms their birefringence. A morphologic study of the thin films deposited onto glass surfaces was performed, proving the good adhesion of both dyes. By thermal analysis and calorimetry, the melting temperatures were determined (~224–225 °C for both of them), as well as their decomposition pathways and thermal effects (enthalpy variations during undergoing processes); thus, good thermal stability was exhibited. The interaction of the two compounds with collagen in the suede was studied, as well as their antioxidant activity, advocating for good chemical stability and potential to be safely used as coloring agents in the food industry.  相似文献   
74.
We consider the random‐cluster model (RCM) on with parameters p∈(0,1) and q ≥ 1. This is a generalization of the standard bond percolation (with edges open independently with probability p) which is biased by a factor q raised to the number of connected components. We study the well‐known Fortuin‐Kasteleyn (FK)‐dynamics on this model where the update at an edge depends on the global geometry of the system unlike the Glauber heat‐bath dynamics for spin systems, and prove that for all small enough p (depending on the dimension) and any q>1, the FK‐dynamics exhibits the cutoff phenomenon at with a window size , where λ is the large n limit of the spectral gap of the process. Our proof extends the information percolation framework of Lubetzky and Sly to the RCM and also relies on the arguments of Blanca and Sinclair who proved a sharp mixing time bound for the planar version. A key aspect of our proof is the analysis of the effect of a sequence of dependent (across time) Bernoulli percolations extracted from the graphical construction of the dynamics, on how information propagates.  相似文献   
75.
相干anti-Stokes Raman散射(coherent anti-Stokes Raman scattering,CARS)技术作为一种非接触测量手段,已广泛应用于多种发动机模型燃烧室温度测量及地面试验.然而,目前的工作主要集中在稳态燃烧场温度的测量,缺乏用高分辨率的单脉冲来测量瞬变的燃烧火焰温度及组分浓度的研究.基于CARS理论,结合多参数拟合算法,开发了基于MATLAB的CARS光谱计算和拟合程序CARSCF;利用McKenna平面火焰炉在不同工况下进行了温度测量,并与DLR测量结果进行对比,结果显示开发的CARSCF具有较高的测量重复性和准确性;最后将CARS技术应用于测量超燃冲压发动机点火过程中的温度测量,获取了点火过程中的温度.结果显示,在来流Mach数为3的条件下,H2/air点火过程中温度呈现急剧上升然后缓慢下降,而CARS信号则呈现急剧上升然后急剧下降随后又缓慢上升的趋势,并且在点火过程中最高温度为1 511 K.   相似文献   
76.
The laminar-turbulent transition in boundary-layer flows is often affected by wall imperfections, because the latter may interact with either the freestream perturbations or the oncoming boundary-layer instability modes, leading to a modification of the accumulation of the normal modes. The present paper particularly focuses on the latter mechanism in a transonic boundary layer, namely, the effect of a two-dimensional(2 D) roughness element on the oncoming Tollmien-Schlichting(T-S) modes when they propagate through the region of the rapid mean-flow distortion induced by the roughness. The wave scattering is analyzed by adapting the local scattering theory developed for subsonic boundary layers(WU, X. S. and DONG, M. A local scattering theory for the effects of isolated roughness on boundary-layer instability and transition: transmission coefficient as an eigenvalue. Journal of Fluid Mechanics, 794, 68–108(2006)) to the transonic regime, and a transmission coefficient is introduced to characterize the effect of the roughness. In the sub-transonic regime, in which the Mach number is close to, but less than, 1, the scattering system reduces to an eigenvalue problem with the transmission coefficient being the eigenvalue; while in the super-transonic regime, in which the Mach number is slightly greater than 1, the scattering system becomes a high-dimensional group of linear equations with the transmission coefficient being solved afterward. In the largeReynolds-number asymptotic theory, the K′arm′an-Guderley parameter is introduced to quantify the effect of the Mach number. A systematical parametric study is carried out,and the dependence of the transmission coefficient on the roughness shape, the frequency of the oncoming mode, and the K′arm′an-Guderley parameter is provided.  相似文献   
77.
Excessive amounts of reactive oxygen species (ROS), unless counterbalanced by antioxidants, can cause cellular damage under oxidative stress conditions; therefore, antioxidative defenses against ROS must be measured. With the development of nanotechnology, nanoparticles have found numerous applications in science, health, and industries. Magnetite nanoparticles (Fe 3 O 4 :MNPs) have attracted attention because of their peroxidase-like activity. In this study, hydroxyl radicals (•OH) generated by MNPs-catalyzed degradation of H 2 O 2 converted the N,N-dimethyl-p-phenylenediamine (DMPD) probe into its colored DMPD•+ radical cation, which gave an absorbance maximum at λ = 553 nm. In the presence of antioxidants, •OH was partly scavenged by antioxidants and produced less DMPD• + , causing a decrease in the 553 nm-absorbance. Antioxidant concentrations were calculated with the aid of absorbance differences between the reference and sample solutions. The linear working ranges and trolox equivalent antioxidant capacity coefficients of different classes of antioxidants were determined by applying the developed method. In addition, binary and ternary mixtures of antioxidants were tested to observe the additivity of absorbances of mixture constituents. The method was applied to real samples such as orange juice and green tea. Student t-test, F tests, and the Spearman’s rank correlation coefficient were used for statistical comparisons.  相似文献   
78.
Acoustic properties of an additive-manufactured SiC scaffold with hexagonal symmetry fabricated by the robocasting method are studied both numerically and experimentally. The numerical analysis is based on the finite element method (FEM) using Bloch boundary conditions. The calculations show both angular and frequency dispersion of the acoustic waves with wavelengths comparable to the spacing between the rods, i.e., on a millimeter scale, indicating interesting acoustic properties in the MHz range. The dispersion character leads to focusing of the energy propagation into the directions of the rods of the hexagonal structure. This is illustrated by modal-based calculations of the propagation of longitudinal and out-of-plane shear wave packets with a dominant wavelength. The experimental analysis consists of two steps, the measurement of the resonant spectrum and shear wave propagation character. The measured resonant spectrum is in good agreement with the one calculated using numerically obtained low-frequency properties of the structure, also showing the quality of the overall manufactured structure. The time-domain measurement shows significant changes in the energy propagation between low and high frequencies, as predicted by FEM calculations.  相似文献   
79.
This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer,which is also an exact solution to the unsteady Navier-Stokes(NS)equations.The boundary layer energy equation is solved with the closed form solutions for prescribed wall temperature and prescribed wall heat flux conditions.The wall temperature and heat flux have power dependence on both time and spatial distance.The solution domain,the velocity distribution,the flow field,and the temperature distribution in the fluids are studied for different controlling parameters.These parameters include the Prandtl number,the mass transfer parameter at the wall,the wall moving parameter,the time power index,and the spatial power index.It is found that two solution branches exist for certain combinations of the controlling parameters for the flow and heat transfer problems.The heat transfer solutions are given by the confluent hypergeometric function of the first kind,which can be simplified into the incomplete gamma functions for special conditions.The wall heat flux and temperature profiles show very complicated variation behaviors.The wall heat flux can have multiple poles under certain given controlling parameters,and the temperature can have significant oscillations with overshoot and negative values in the boundary layers.The relationship between the number of poles in the wall heat flux and the number of zero-crossing points is identified.The difference in the results of the prescribed wall temperature case and the prescribed wall heat flux case is analyzed.Results given in this paper provide a rare closed form analytical solution to the entire unsteady NS equations,which can be used as a benchmark problem for numerical code validation.  相似文献   
80.
Technical advances in the development of field-deployable capillary and microchip electrophoretic instruments and reports of their deployment between 2013 and 2017 were reviewed. Strategies and considerations in the design of the injection, separation and detection hardware, chemistry and associated infrastructure were discussed from an in-field perspective, with portability, robustness and automation/“ease of use” featuring as key requirements. Integration of functionality is important for adequate in-field performance. Progress was made towards the use of multiple channel devices for increased throughput and/or resolving power, mixing devices for on-line/in-line sample derivatization, battery operation and temperature control. The strengths and weaknesses of the various approaches described in the literature are discussed from the perspective of in-field operation. An overview of the applications of the field electrophoretic instruments is provided, including environmental science and planetary investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号